A Gelfand-Phillips space not containing l1 whose dual ball is not weak * sequentially compact
نویسندگان
چکیده
منابع مشابه
The ideal completion is not sequentially adequate
It is well known that for the case of a countable partial order, the ideal completion and the chain completion coincide. We investigate the boundary at which the chain and ideal completion do not coincide. We show in particular that the ideal completion is not sequentially adequate; that is it is not possible in general to simply replace the ideal completion with a completion based on sequences...
متن کاملSEQUENTIALLY COMPACT S-ACTS
The investigation of equational compactness was initiated by Banaschewski and Nelson. They proved that pure injectivity is equivalent to equational compactness. Here we define the so called sequentially compact acts over semigroups and study some of their categorical and homological properties. Some Baer conditions for injectivity of S-acts are also presented.
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملA countably compact , separable space which is not absolutely countably compact Jerry
We construct a space havfng the properties in the title, and with the same technique, a countably compact T2 topological group which is not absolutely countably compact.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2001
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089501010114