A Gelfand-Phillips space not containing l1 whose dual ball is not weak * sequentially compact

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ideal completion is not sequentially adequate

It is well known that for the case of a countable partial order, the ideal completion and the chain completion coincide. We investigate the boundary at which the chain and ideal completion do not coincide. We show in particular that the ideal completion is not sequentially adequate; that is it is not possible in general to simply replace the ideal completion with a completion based on sequences...

متن کامل

SEQUENTIALLY COMPACT S-ACTS

‎‎The investigation of equational compactness was initiated by‎ ‎Banaschewski and Nelson‎. ‎They proved that pure injectivity is‎ ‎equivalent to equational compactness‎. ‎Here we define the so‎ ‎called sequentially compact acts over semigroups and study‎ ‎some of their categorical and homological properties‎. ‎Some‎ ‎Baer conditions for injectivity of S-acts are also presented‎.

متن کامل

Weak Banach-Saks property in the space of compact operators

For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and‎ ‎a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$‎, ‎it is shown that the strong Banach-Saks-ness of all evaluation‎ ‎operators on ${mathcal M}$ is a sufficient condition for the weak‎ ‎Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in‎ ‎Y^*$‎, ‎the evaluation op...

متن کامل

A countably compact , separable space which is not absolutely countably compact Jerry

We construct a space havfng the properties in the title, and with the same technique, a countably compact T2 topological group which is not absolutely countably compact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2001

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089501010114